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Abstract 

The paper considers one of the weighted risk indicators used by the Major Hazards Assessment 
Unit (MHAU) of the Health and Safety Executive in formulating advice to local planning 
authorities on the development of land in the vicinity of hazardous installations. It is shown that 
MHAU's 'Risk Integral' can be recast into the form of an expected utility function, suitable 
according to classical decision theory for reaching consistent decisions on risk tolerability. It is 
also shown that the weightings that the Risk Integral implicitly attributes to multiple fatality 
accidents are not out of line with those proposed by others. Crown Copyright © 1998 Published by 
Elsevier Science Ltd. 
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1. Introduct ion 

F - n  curves and f - n  curves are concepts in current thinking on the assessment of 
risks to populations from hazardous installations. It has been suggested (Evans and 
Verlander, Ref. [l ]) that whilst F - n  curves may be valuable presentational devices, their 
simple use as criteria for tolerability of risk is unsatisfactory, and that a criterion based 
on an 'expected utility function' ,  giving appropriate weight to multiple fatality accidents, 
is to be preferred. According to classical decision theory, tolerability decisions should be 
made on the basis of expected utility if their consistency is to be assured (e.g. Lindley, 

Ref. [2]). 
In decision theory, 'uti l i ty '  is a number expressing the merit or attractiveness of a 

consequence. If there are N different consequences with frequencies f(1)  . . . . .  f ( N )  
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and utilities u(l)  . . . . .  u(N), then the expected utility function is •f( i) .  u(i), summed 
from i = 1 to N. In the present context, where the consequences are accidents with 
multiple fatalities, the term 'disutility' seems more appropriate, and will be used from 
here on, following Ref. [1]. 

Over recent years, the Major Hazards Assessment Unit (MHAU) of  the UK's  Health 
and Safety Executive has been advising local planning authorities on land-use in the 
vicinity of  hazardous installations, using an approach described publicly in a discussion 
document (Health and Safety Executive, Ref. [3]), a document which is now being 
revised and updated to take account of  feedback and technical progress. One technical 
development has been MHAU's  'Risk Integral' (within Carter, Ref. [4]). The purpose of  
this note is to derive certain relationships which show that the Risk Integral is an 
expected disutility function, and that the weightings which it attributes to multiple 
fatality accidents are not out of  line with those proposed by others. 

2. Analysis 

We begin by considering f -n  and F-n curves. Following the usual definitions, f(n) 
is taken to denote the frequency of  accidents at a major hazard installation which cause 
exactly n fatalities, and the f - n  curve is simply a plot of  the values of  f(n) against n. 
Similarly, F(n) is taken to denote the summed frequency of  all accidents at the 
installation which cause n or more fatalities, and the F-n curve is a plot of the values of  
F(n) against n. 

A simple measure of  the risk from the installation can be obtained by calculating the 
expected number of  fatalities per year (ENFY) from accidents. It is calculated from the 
values of  f (n)  as: 

ENFY = Y,f(n)  • n 

This has the form of an expected disutility function, with the number of  fatalities n 
being used as the measure of disutility. 

The ENFY coukl be used in a tolerability criterion, the risk from the installation 
being judged tolerable if the ENFY is less than some agreed criterion value. However, a 
criticism that could be made of  using the ENFY as a criterion is that it does not include 
an allowance for aw~rsion to multiple fatality accidents. By not distinguishing between 
an installation whick has one accident causing 100 deaths and an installation which has 
100 accidents each causing one death over the same period of  time, the ENFY fails to 
reflect the contrast between society's strong reaction to major accidents that occur 
occasionally and its quiet tolerance of  the many small accidents that occur frequently. 

As a remedy, risk assessment practitioners have suggested using instead of  the 
ENFY, a ' weighted risk indicator' which gives greater emphasis to the number of  deaths 
in an accident by ra:ising the disutility n in the evaluation to some power greater than 
one. Alternatives to Lhe ENFY have included (Schofield, Ref. [5]): 

Y~f(n). n '5 and 2 f ( n ) "  n 2 

These too have the i-~orm of an expected disutility function. The factor by which each 
term in the ENFY summation has been enhanced can be called the 'aversion multiplier'. 
In the cases shown, the aversion multiplier is n °s and n, respectively. 
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An earlier reference (Okrent, Ref. [6]) tentatively proposed Ef(n) .  n 12. 
The practice in MHAU is to use the expression 

]~F(n)  • n. 

When written in integral form, this expression is called by MHAU as the 'Risk Integral'. 
At first sight, the expression may appear to be a radically different way of introducing 
aversion, but in fact, MHAU's  method will be shown below to correspond closely to the 
other methods, certainly for those forms of  F - n  curves that are of practical interest. 

We begin by considering an installation which has an F - n  curve of  the form usually 
presented. This is a straight line plotted on log- log  axes and extending to very large 
values of  n without limitation. 

Firstly, from the definitions of f(n) and F(n)  we obtain: 

f ( n )  = F(n) - F(n + 1) ( l )  

for n = 1, 2, 3 . . . .  and so on. 
Secondly, for this form of F-n curve, we have: 

F (1 )  
F ( n )  = (n )  a (2) 

where a is a constant (usually of the order of 1 or 2), and again n = l, 2, 3 . . . .  and so 
o n .  

Using Eq. (2) to substitute for F(n + l) in Eq. (1) gives: 

r(1)  
f ( n )  = F(,7) 

( , ,+  l ) "  

Being imaginative with the last term we can rewrite this as: 

F ( I )  (n)" 
f ( n )  = F ( n )  - (--)~--v * (n + l )~ '  

Using Eq. (2) again to replace part of the last term gives: 

( n ) "  
f (77)  = F ( n ) - F ( n )  × 

( ~ + 1 )  ~ 

Finally, combining the F(n)  terms and isolating F(n) gives: 

( , +  1)" 
F(n) = f ( n )  X 

( ,  + 1) ~ - (n) ~' 

The last result tells us how corresponding terms in the F(n) series and the f(n) series 
are related. We can use it to transform M H A U ' s  weighted risk indicator, defined in 
terms of only F(n),  into a form involving only f(n). We obtain the relationship: 

( , ,+  1)" 
R e l a t i o n s h i p  ( R 1 )  . . .  Z F ( n )  - n = ~ f ( n )  • n '  

( .  + 1 ) " -  ( , ) °  
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1. n °5 aversion 

2. n aversion 
3. MHAU(a=I)  aversion 
4. MHAU(a=2)  aversion 

n 

Fig. I. Comparisons for straight-line F -  n curves of  unlimited extent. 

The right-hand side is now clearly recognisable as an expected disutility function. 
Moreover, it can be compared easily with the other suggested forms, viz. 

~ f ( n ) .  n' 5 and Y : f ( n ) .  1/2 

The aversion multiplier applied to each f ( n )  • n term in the MHAU formulation is 
different depending on the value of a. Recall that - a is the slope of the F - n  curve. For 
a slope of  - 1, the multiplier is (n + l), whilst for a slope of  - 2  it is (n + 1)2/(2n + 1). 
Fig. 1 shows how the n °5 and 1/ multipliers and the MHAU (a = l) and (a = 2) 
multipliers vary with n. It can be seen that the MHAU formulation is towards the upper 
end of, but mostly within, the range of  the others. 

We next consider F - n  curves which are truncated at some value of n, which we will 
call N~,ax. The F - n  curves of  real installations must be truncated, since the nmnber of  
people at risk from the activities of  the installation is surely finite. 

Again, we begin with Eq. (1), which remains valid for all n. However, for a truncated 
curve, Eq. (2) is modified as follows: 

F(I) 
F ( n )  ( n ) "  f o r n  1 ,2 ,3  . . . . .  Nma~,and F ( n ) = O f o r n > N m a  x. (2 ' )  

Following the same logical path which led us to Relationship 1, the derivation now 
leads to: 

I (n + l)" 
F ( n )  = f ( n )  >( ( n +  1) a - ( n )  a f o r n =  1 ,2 ,3  . . . . .  Nma x -  1, 

F ( n )  = f ( n )  for n = Nma x , and 

F ( n )  = 0 for n > Nma x . 

Plugging this into MHAU's  weighted risk indicator gives: 

Nmax Nmax - 1  (1/ -J- 1) a ] 
Eg(n).n= E f(n).n. )~ ] +f(Nmax)'Nma x- 

, , ( n + l  - ( . ) * '  
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Making the range of  the two summations identical, this is the same as: 

: J ( . ) . .  ( .  

( f ,o , ,  + l) <' 
-7 (Nm,x)  ' Nmax " 

(Xmax + l)~' - (N.~a~) ° 

which simplifies after combining the last two terms to give: 

+ f (  Nmax ) -Nma x 

Relationship(Rl')... EF(n)'n= •7(n)'n' 
, , ( n +  1)° Z ~ , , )  ° l 

(U~a~)  " 
- 7 (  U~ a~ )" Nma~- 

(Nm~x + 1)a - (Nm~x) a 

Comparing this with Relationship (R1), we see that truncating the F - n  curve has lost 
us the neat form of (R1) - -an  additional term has appeared on the right-hand side. The 
only real value of  Relationship (Rl ' )  is that it demonstrates this effect of truncation. The 
relationship has no positive value in its own right, the presence of the additional term 
being seen as an untidy and unwelcome intrusion. Happily, a different relationship, 
without an intrusive term, can be derived by approaching the task from a different 
starting point and following a simpler route. 

We now begin, not from Eq. (1), but from the fundamental definitions of f(n) and 
F(n). From them we may write, for our truncated F-n curve: 

F ( I )  : f ( l )  + f ( 2 )  + f ( 3 )  + . . .  +f(Nma x) 

F ( 2 )  = . . .  7 (2  / + 7 ( 3 )  + . . .  +f(Nm~x) 
F(3)  = . . .  f ( 3 ) + . . .  +f(Nm~) (1") 

. . .  and so on unti l . . .  

F(Nmax) = . . .  f (  Nmax)- 

Plugging these into M H A U ' s  weighted risk indicator gives: 

Nmax 
~F(n)  . n  = [ ] ( 1 )  + 7 ( 2 )  + 7 ( 3 )  + . . .  +/(Nma~)] X 1 

1 

+ [ f ( 2 )  + f ( 3 )  + . . .  +f(Nma~) ] × 2 

+ [ 7 ( 3 )  + . . .  + f ( N ~ . ~ ) ]  × 3 +  . . .  +f(Nma×) XNma x • 

Now, because we have a finite number of  terms, it is valid to rearrange their order. 
So, adding up by columns rather than by rows, we can see that 

Nm~x 
~_, F(n).n = 7 ( l )  × 1 + f ( 2 )  × (1 + 2) + f ( 3 )  X (1 + 2 + 3) 

1 

+ . . .  +f(Nma~) × (1 + 2 + 3 + . . .  +Nm,x).  
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But we know that (l + 2 + 3 + . . .  + k )  = k - ( k  + 1)/2.  So we can write: 

Nmax Nnlax 

Relationship (R2).. .  E F ( n ) ' n  = E f ( n ) ' n "  [n + 1]/2. 
I 1 

Now we have no intrusive term. Again the right-hand side is recognisable as an 
expected disutility function, and again we are in a position to make the same compar- 
isons as before. For truncated F-n curves MHAU's  aversion multiplier is (n + 1)/2,  
which again we must compare with n °5 and n. Fig. 2 shows the comparison; the broken 
line being the MHAU formulation. It can be seen that the MHAU formulation lies 
comfortably within the range of  the others for all values of  n. 

Note that in deriwing Relationship (R2) we have made no use of Eq. (2). Indeed, we 
have made no assumption whatsoever about the shape of the F-n curve, other than that 
it is truncated. Relationship (R2) therefore applies to all truncated F-n curves. 

Incidentally, another useful relationship can be derived from the equations set down 
above in deriving R2. Adding together the Nma x r o w s  of Eq. (1"), we obtain: 

Nmax 

Y'.F(n) : f ( l )  X I + f ( 2 )  X 2 + f ( 3 )  X 3 +  . . .  +f(Nm.×) X N,n~×. 
1 

That is, 

Nmax Nmax 

E F ( . )  : F.f ( . )  . . .  
I 1 

Thus, the sum of the summated frequencies gives us the ENFY, from which we 
began. Again, this relationship applies to all forms of truncated F-n curves, irrespective 
of  their shape. 
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F i g .  2 .  C o m p a r i s o n s  f o r  t r u n c a t e d  F -  n c u r v e s  o f  a n y  s h a p e .  

Key:- 

1. n °s aversion 

2. n aversion 
3. MHAU aversion 
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3. Summary  and conclusiions 

For F - n  curves of the form usually presented (straight lines of unlimited extent), the 
weighted risk indicator used by MHAU in formulating advice to local planning 
authorities, E F ( n ) .  n, can also be written as: 

• - 7 . )  

where - a  is the slope of the f - n  curve. This alternative form makes the indicator 
readily recognisable as art expected disutility function, suitable (according to classical 
decision theory) for reaching consistent decisions on risk tolerability. For typical slopes 
of around - 1 or - 2, the term in square brackets, which can be regarded as the aversion 
multiplier, is towards the ,apper end of, but mostly within, the range of formulations that 
have been proposed by others. 

For F - n  curves which are truncated at some maximum value of n (and are therefore, 
of more practical relevance), MHAU's  weighted risk indicator can also be written as: 

Nmax 

. , , .  ( n +  1)/2. 
I 

Again, this is recognisable as an expected disutility function, and in this case, the 
aversion multiplier lies comfortably within the range of formulations proposed by others. 
The formulation applies to all truncated F - n  curves, irrespective of their shape. 

4. Disclaimer 

The views expressed in this paper are those of the author and should not be used as a 

definitive statement of HSE policy• 
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